US009411741B2

a2 United States Patent
Gupta et al.

US 9,411,741 B2
Aug. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR APPLICATION
LEVEL CACHING
(71) Applicants: Munish Kumar Gupta, Bangalore (IN);
Aravind Ajad Yarra, Bangalore (IN)
(72)

Inventors: Munish Kumar Gupta, Bangalore (IN);

Aravind Ajad Yarra, Bangalore (IN)
(73)

Assignee: WIPRO LIMITED, Bangalore (IN)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 282 days.

(21) Appl. No.: 14/030,193

(22) Filed: Sep. 18, 2013

Prior Publication Data

US 2015/0032966 Al Jan. 29, 2015

(65)

(30) Foreign Application Priority Data

Jul. 29,2013 (IN) e 3361/CHE/2013

(51) Int.CL
GOGF 12/08
GOGF 12/12
USS. CL
CPC ... GOGF 12/0891 (2013.01); GOGF 12/121
(2013.01)

(2016.01)
(2016.01)

(52)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,249,288 B2 7/2007 Peled et al.
8,322,844 B2 12/2012 Toya
2006/0248276 Al* 11/2006 Kilian GO6F 12/0831
711/130
2007/0124541 Al* 5/2007 Lang GO6F 12/0862
711/137
2012/0042065 Al 2/2012 Takahashi
2012/0297144 Al* 112012 Gill ..o, GO6F 12/0862
711/137
2013/0013729 Al* 12013 Bennett HO4L 67/2842
709/217
OTHER PUBLICATIONS

R. Rao et al, “Non-invasive Caching using AOP;” http://
slashdevslashzero.files.wordpress.com/2011/01/cachingusingaop__
article_ v0-2.pdf (Jan. 2011).

* cited by examiner

Primary Examiner — Daniel Tsui
(74) Attorney, Agent, or Firm — Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P.

(57) ABSTRACT

The disclosure generally relates to methods and systems for
application level caching and more particularly to dynami-
cally applying caching policies to a software application. In
one embodiment, an application level caching method, com-
prising: monitoring, using a utility executed by a processor,
run-time data access operations corresponding to an applica-
tion; identifying, using the processor, at least one character-
istic associated with the run-time data access operations;
triggering, using the processor, a caching rule based on the at
least one characteristic associated with the run-time data
access operations; and providing, using the processor, a
memory access instruction according to the caching rule.

21 Claims, 2 Drawing Sheets

Monitar an access cperation of an application st runtime

Determine at least one characteristic of the acoess operstion

104
o

s

108

Trigger a caching rule bssed on the one or mare characteristics of the access
apearation

g

U.S. Patent Aug. 9,2016 Sheet 1 of 2 US 9,411,741 B2

Stast

102

Monitor an access operation of an apglication at runtirme '
' 104

Determine at least one charactaristic of the accass operation

: 106

Trigger a caching rule based on the ona or more characteristics of the access .

operation
End

U.S. Patent

Aug. 9, 2016 Sheet 2 of 2

200 \

Processor
202

Memaory
204

Display module
208

FIG. 2

US 9,411,741 B2

US 9,411,741 B2

1
SYSTEM AND METHOD FOR APPLICATION
LEVEL CACHING

TECHNICAL FIELD

The disclosure relates generally to methods and systems
for application level caching, and more particularly to
dynamically applying caching policies to a software applica-
tion.

BACKGROUND

Software applications running on a computing device
require accessing data stored in a data store, which may be a
part of the computing device or may be connected to the
computing device over a network. To increase processing
efficiency while accessing the required data, data can be
cached. In caching, an application checks for required data in
a cache, which can be accessed faster than the data store of the
computing device, before accessing the data store. If the
required data exists in the cache, which is referred to as a
“cache hit,” the application accesses that data from the cache.
If the data does not exist in the cache, which is referred to as
a “cache miss”, the application accesses that data from the
data store and optionally, caches the data for subsequent use.

Usually, caching of data associated with an application is
implemented in an original code of the application. The logic
behind the caching is determined at the time of developing the
application. If the caching logic needs to be modified or a new
caching logic needs to be introduced at a later stage due to
various requirements, the original code needs to be modified
accordingly. For example, a developer of the application may
have to modify the existing caching logic or include addi-
tional code for implementing the new caching logic and
include that additional code in the original code.

Each time caching is implemented for the application, the
application code must be modified and the re-compiled appli-
cation tested again before it is deployed for practical use.
Further, during the run time of the application, if anomalies
are found in the application behavior, the application code
must be fixed and the application tested again before being
redeployed. In addition, because it is difficult to predict the
changing caching needs of the application in advance, an
analysis of the changing cache pattern needs to be done and
the application code needs to be recompiled every time
changes in caching patterns are encountered. This further
leads to multiple code modification and testing cycles.

SUMMARY

In one embodiment, an application level caching method is
disclosed, comprising: monitoring, using a utility executed
by a processor, run-time data access operations correspond-
ing to an application; identifying, using the processor, at least
one characteristic associated with the run-time data access
operations; triggering, using the processor, a caching rule
based on the at least one characteristic associated with the
run-time data access operations; and providing, using the
processor, a memory access instruction according to the cach-
ing rule.

In one embodiment, an application level caching system is
disclosed, comprising: a processor; and a memory disposed in
communication with the processor and storing processor-
executable instructions, the instructions comprising instruc-
tions to: monitor, using a utility executed by the processor,
run-time data access operations corresponding to an applica-
tion; identify at least one characteristic associated with the

10

15

20

25

30

35

40

45

50

55

60

65

2

run-time data access operations; trigger a caching rule based
on the at least one characteristic associated with the run-time
data access operations; and provide a memory access instruc-
tion according to the caching rule.

A non-transitory computer readable medium is disclosed,
having stored thereon computer-executable application level
caching instructions, the instructions comprising instructions
for: monitoring, using a utility executed by a processor, run-
time data access operations corresponding to an application;
identifying at least one characteristic associated with the run-
time data access operations; triggering a caching rule based
on the at least one characteristic associated with the run-time
data access operations; and providing a memory access
instruction according to the caching rule.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method of dynamically
applying caching policies in accordance with some embodi-
ments.

FIG. 2 illustrates a block diagram of a system for dynami-
cally applying caching policies in accordance with some
embodiments.

DETAILED DESCRIPTION

Now, exemplary embodiments of the present disclosure
will be described with reference to the accompanying draw-
ings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts.
While exemplary embodiments and features are described
herein, modifications, adaptations, and other implementa-
tions are possible, without departing from the spirit and scope
of the disclosure. Accordingly, the following detailed
description does not limit the subject matter. Instead, the
proper scope of the subject matter is defined by the appended
claims.

FIG. 1 illustrates a flowchart of a method of dynamically
applying caching rules to a software application running on a
computing device. The computing device may be a tablet, a
desktop computer, a mobile phone, a personal digital assistant
(PDA), or any other electronic device that has computing
capabilities to run a software application. The computing
device may include a processor, a data store, a cache memory,
and a cache rules store.

In some embodiments, the data store may include a storage
database where data associated with one or more application
codes may be stored. The data store may be implemented as a
part of the computing device or as a separate entity that is
connected to the computing device over a network. In some
embodiments, the cache memory may be implemented as part
of'a random access memory (RAM) of the computing device
for faster access to data that is cached. Further, the cache rules
store may be implemented as a part of the data store in the
computing device or as a separately from the data store.

At step 102, a utility executed by the processor may moni-
tor one or more run-time data access operations of the appli-
cation. For purposes of this disclosure, run-time may include
any instance that the application is executed. The data access
operations may include operations involving the application
code accessing the data store. The data access operations may
include a code line accessing memory, a callable unit access-
ing memory, a callable unit accessing another callable unit
etc. For purposes of this disclosure, a callable unit may
include a subroutine, a function, a method, etc. Further, the
term “access” in this disclosure includes reading data from a
memory (such as the data store or cache), or writing data to

US 9,411,741 B2

3

the memory, or both, simultaneously or otherwise. Here, a
memory such as the data store may be a part of the computing
device or may be connected to the computing device over a
network. Thus, the term “access” may encompass read or
write operations that occur internally in the computing device
(reading/writing data to or from an internal data store) or over
a network (reading/writing data to or from a data store con-
nected to the computing device over the network).

One or more utilities or agents executed by the processor
may monitor the data access operations. Utilities or agents
may be small compiled logic components that add a trace
identification number to a data access operation to monitor
one or more parameters associated with that data access
operation.

Monitoring the run-time data access operations may
include monitoring various parameters associated with data
access operations when the application is run. The processor
may monitor the parameters associated with all the data
access operations in a chronological order. The parameters
that may be monitored include, without limitation, data
accessed by a data access operation (e.g., by monitoring
which application variables correspond to the accessed data),
memory addresses accessed by the data access operation,
amount of data accessed during the data access operation,
cycle time of the access operation, that is, time between the
invocation of the access operation and returning the data to
the calling data access operation for processing, processor
utilization etc. Additionally, dependencies between the
access operation and other callable units invoked when the
access operation occurs, processing cost associated with the
data access operation (e.g., computation time, computation
energy consumption, number of clock cycles, number of pro-
cessing threads, number of processors involved in the com-
putation, or combinations thereof), the input and the output of
the callable unit associated with the access operation, etc.
may be monitored. In addition, in some embodiments, a time
stamp may be associated with each activity of an access
operation to determine when the access operation occurs and
if there are any patterns associated with the access operation
with respect to time of day (or relative time with reference to
a time marker, e.g., initial deployment of application).

The processor may maintain a log of the monitored access
operations. The log may include a list of the monitored access
operations and time stamps associated with each of the moni-
tored data access operations. The log may also include the
monitored parameters associated with each of the data access
operations. Thus, the log may present an overall listing of
events related to the data access operations occurring over a
period of time. For example, a log entry may be of the form:

t,—accessoperation; called <determine_average_value>,

where t, indicates the time at which accessoperation,
called a subroutine <determine_average_value>. Similarly,
the log may indicate individual instances of access operations
accessing the data store, how much data was accessed in each
of'these instances, time taken to perform the access operation,
processor utilization, etc. Thus, the log may provide a com-
plete view of the various memory accesses performed by the
application.

On monitoring the data access operation, the utility may
identify one or more characteristics of the monitored data
access operation at step 104. The processor may identify the
characteristics by using the log that includes the parameters
associated with the monitored data access operations. The
one or more characteristics may include frequency of a data
access operation, memory addresses accessed by a data
access operation, and dependencies associated with a data
access operation, that is, other callable units that are invoked

20

35

40

45

4

whenever the data access operation occurs. The one or more
characteristics may further include amount of data accessed
during a data access operation, cycle time of a data access
operation, and processing cost associated with a data access
operation. In addition, the one or more characteristics may
include a correlation between the input to the output of a
callable unit associated with a data access operation, that is,
determining whether the callable unit provides the same out-
put for a given input every time the callable unit is invoked,
and correlation of the access operation to the total number of
data access operations occurring during a period of time.

In some embodiments, the characteristic of a data access
operation may be determined by aggregating all instances of
aparticular kind of access operation. For example, in keeping
with the previous example, the number of accesses of the
access operation <accessoperation, > to access the subroutine
<determine_average_value> may be determined by counting
each such individual log entry. A high number of accesses of
the subroutine <determine_average value> by <accessop-
eration,> or any other access operation may indicate that the
subroutine <determine_average value> is frequently
accessed and may be a potential candidate for caching. In this
case, the high number of accesses to the subroutine <deter-
mine_average_value> may be considered characteristic of
<accessoperation,>. In another example, based on the log
entries over a period of time, it may be determined that an
<accessoperation,> accesses particular data every day at a
certain time. For example, a banking application may access
the previous day’s closing balance every day at the start of the
business day so that adjustments for the current day may be
made accordingly. In this case, the repeated access of the
closing balance at the start of each business day may be
considered a characteristic of <accessoperation,>. In another
example, the processor utilization of an <accessoperation;>
over a period of time may be determined to be substantially
higher than all other access operations. Thus, high processor
utilization may be identified as a characteristic of <accessop-
eration;> and <accessoperation,> may become a potential
candidate for caching.

Thus, the characteristics for individual data access opera-
tions may be identified from the monitored parameters for
each data access operation. The processor may identify any of
the other mentioned characteristics by using the monitored
parameters associated with the data access operations. The
identified characteristics may be stored in the memory of the
computing device so that they may be used to define or trigger
caching rules.

At step 106, the utility executed by the processor may
trigger one or more caching rules based on the one or more
characteristics associated with the access operation. In some
embodiments, an administrator may predefine caching rules
before the application is run for practical purposes. In some
embodiments, such rules may also be created during a testing
phase of the application before the application is practically
deployed. The administrator may randomly create rules
before practically deploying the application. Thus, such rules
may be considered to be predefined for a run-time execution
of the application when it is deployed for the first time.

In some embodiments, an administrator may predefine the
caching rules based on the characteristics associated with
different data access operations. In accordance with these
embodiments, the identified characteristics may be visually
displayed to an administrator. Based on the displayed char-
acteristics, the administrator may define rules to implement
caching. The identified characteristics of each operation may
be displayed along with each data access operation. The
administrator may then identify “hotspots™ in the application

US 9,411,741 B2

5

that may cause bottlenecks or delays and may define rules to
cache the data accordingly. The rules created by the admin-
istrator based on the characteristics of the access operations
may be considered to be predefined for any future instances of
those access operations.

In some embodiments, caching rules may be automatically
generated based on determining the one or more characteris-
tics associated with the access operation. For example, on
determining that a number of users accessing an <accessop-
eration,> to invoke a callable <unit,> of the application
exceed a predefined threshold, a new caching rule may be
automatically created. The new caching rule may indicate
that if the number of users exceeds a second threshold greater
than the predefined threshold, the callable <unit,> being
called by the users should be cached. Thus, automatically
created rules for the access operations may be considered to
be predefined for any future instances of the access operations
that occur after the characteristics are identified. These rules
can be stored in the memory of the computing device such
that they can be triggered during the future instances of the
access operations.

The caching rules may include cache populating rules,
cache replacement rules, and cache eviction rules. Cache
populating rules may define rules for caching data that the
application needs to access. The cache populating rules may
specify, for example, what is to be cached, and also indicate
when a particular item or memory line is to be cached. In one
example, based on monitoring the access operations, it may
be determined that during a time interval 3 PM to 5 PM, an
<accessoperation, > occurs repeatedly. Thus a cache populat-
ing rule may be triggered to cache a callable <unit,> that is
invoked by the <accessoperation,>. Such a cache populating
rule may specify that if an access operation occurs repeatedly
over aperiod of time to invoke a callable unit, the callable unit
should be cached. In another example, a utility or agent may
monitor that an <accessoperation,™> invokes a callable
<unit, >. It may further be monitored that a callable <unit,>is
invoked every time the <accessoperation,> invokes callable
<unit,>. Thus, the interdependency between callable <unit, >
and callable <unit,> may be identified as a characteristic.
Therefore, a cache populating rule that is based on such
interdependency may be triggered. Such a rule may indicate
that if an access operation is associated with interdependency
between two callable units, both the callable units need to be
cached.

Cache eviction rules may define rules for removing data
from the cache. In an exemplary scenario, a cache eviction
rule may define that if a callable method is not called in 4
hours, the callable method may be removed from the cache
irrespective of whether the cache is full or not. In another
example, if an access operation occurs only between 6:30
PM-7:00 PM in a day, a cache eviction rule may indicate that
cached data associated with the access operation needs to be
removed after 7:00 PM.

Cache replacement rules may define rules for replacing
data in the cache by newer data when the cache is full. In one
example of a cache replacement rule, if the cache is full, a
cached callable unit that is not called in the past 2 hours may
be removed from the cache to accommodate newer data. If
there is more than one callable unit satisfying this condition,
the callable unit with a larger size can be removed.

However, it should be apparent to a person skilled in the art
that caching rules are not limited to these rules and other rules
that define rules for addition, eviction, or replacement of data
from the cache memory may also be implemented. Other
non-limiting examples of cache replacement policies may

5

10

15

20

25

30

35

40

45

50

55

60

65

6

include a least recently used, most recently used rule, a ran-
dom replacement rule, and a segmented least recently used
rule.

Once a caching rule is triggered, the processor may provide
a memory access instruction according to the caching rule. In
some embodiments, the memory access instruction may be
provided by the processor to a cache management subsystem.
The cache management subsystem may then access data from
the data store or the cache memory according to the caching
rule. In an exemplary scenario, the processor may instruct the
cache management subsystem to fetch a callable unit from the
data store and cache it on determining that the callable unit is
frequently accessed. Similarly, the cache subsystem, based
on an instruction by the processor, may remove or replace
data from the cache memory if it is determined that the data
would not be needed again.

In accordance with some embodiments of this disclosure,
the utility or agent may be provided to the application as a
plugin or a software update, for example, to execute either one
or more of the steps of the flow chart of FIG. 1. Once the
application is updated by the agent, caching rules may be
triggered based on the identified characteristics of the appli-
cation.

In the discussed embodiments, because agents are used as
utilities by the processor to execute one or more of the steps of
the flowchart of FIG. 1, the code of the application does not
need to be modified to implement caching. Thus, caching is
implemented for the application in a non-intrusive way, that
is, without modifying the original code of the application.

FIG. 2 illustrates an application level caching system 200
for dynamically applying caching rules for a software appli-
cation. Application level caching system 200 may include a
processor 202 and a memory 204.

When a callable unit of an application code is invoked, the
application may access data associated with that callable unit
from a data store through an access operation. In some
embodiments, the data store may be implemented as a part of
memory 204. In an example, if a callable unit such as a
method of addition of the first two prime numbers is invoked
in a mathematical application, the application may access the
callable unit—method of addition and the data associated
with the callable unit—first two prime numbers “2” and “3”
from memory 204. Subsequently, the callable unit and the
data associated with the callable unit may be cached.

Processor 202 may execute one or more utilities or agents
to monitor one or more access operations of the application at
run time. Utilities or agents may include small compiled logic
components that may add a trace identification number to an
access operation to monitor one or more parameters associ-
ated with that data access operation as described in detail in
conjunction with FIG. 1. The various activities of a data
access operation may be maintained as alog along with a time
stamp to indicate what activities associated with the access
operation occurred at what time.

Once the parameters associated with the data access opera-
tions are monitored, a utility executed by processor 202 may
then identify one or more characteristics of a monitored
access operation. Processor 202 may identify the character-
istics by aggregating all instances of a particular kind of
access operation. All the parameters associated with each data
access operation are aggregated from the overall data of all
the monitored access operations in the log. The identified
characteristics may be stored in memory 204 of the comput-
ing device so that they may be used to define or trigger
caching rules. Various examples of such characteristics are
already discussed above in the context of FIG. 1.

US 9,411,741 B2

7

Subsequently, a utility executed by processor 202 may
trigger one or more caching rules based on identifying the one
or more characteristics associated with the access operation.
In some embodiments, the caching rules may be predefined
by an administrator before the application is run for practical
purposes. In some embodiments, such rules may also be
created during a testing phase of the application before the
application is practically deployed. The administrator may
randomly create rules before practically deploying the appli-
cation. Thus, such rules may be considered to be predefined
for arun-time execution of the application when it is deployed
for the first time.

In some other embodiments, caching rules may be created
by the administrator based on a visual representation of run-
time characteristics of various data access operations of the
application. The characteristics may be displayed on a com-
puter screen of application level caching system 200 by a
display module 206 of application level caching system 200.
The administrator may then identity “hotspots” in the appli-
cation that may cause bottlenecks or delays and may define
rules to cache the data accordingly. Thus, these rules may be
considered to be predefined for future instances of running
the application that occur after the characteristics are identi-
fied. In some embodiments, caching rules may be automati-
cally generated based on determining the one or more char-
acteristics associated with the access operation. These rules
may be considered to be predefined for any future instances of
these access operations that occur after the characteristics are
identified. These rules may be stored in memory 204 such that
they can be triggered during the future instances of the access
operations.

Such caching rules may include cache populating rules for
caching a callable unit or data associated with the callable
unit. Caching rules may further include cache eviction rules
for removing data from the cache memory irrespective of
whether the cache is full or not. Caching rules may also
include cache replacement rules for replacing the data in the
cache when the cache is full. Examples of such caching rules
are discussed above in the context of FIG. 1.

Once a caching rule is triggered, a utility executed by the
processor may provide a memory access instruction accord-
ing to the caching rule. In some embodiments, the memory
access instruction may be provided to a cache management
subsystem (not shown) as required by the caching rule. In an
exemplary scenario, the processor may instruct the cache
management subsystem to fetch a callable unit from the data
store and cache it on determining that the callable unit is
frequently accessed. Similarly, the cache management sub-
system, based on an instruction by the processor, may remove
or replace data from the cache memory if it is determined that
the data would not be needed again.

Some embodiments of'this disclosure provides a number of
advantages including methods, non-transitory computer
readable media, and systems that effectively enable dynami-
cally applying caching rules to a software application. By
using agents or utilities to monitor the run-time access opera-
tions, identify characteristics of the access operations, and/or
triggering caching rules based on those characteristics, cach-
ing is implemented in a non-intrusive way for the application.
Thus, in such embodiments, the code of the application does
not need to be modified to implement caching. This prevents
increasing the complexity of the code of the application.

It should be understood that the apparatuses and devices of
the embodiments described herein are for exemplary pur-
poses, as many variations of the specific hardware and soft-
ware used to implement the embodiments are possible, as will
be appreciated by those skilled in the relevant art(s).

10

15

20

25

30

35

40

45

50

55

60

65

8

Furthermore, each of the devices of the embodiments may
be conveniently implemented using one or more general pur-
pose computers, microprocessors, digital signal processors,
and micro-controllers, programmed according to the teach-
ings of the embodiments, as described and illustrated herein,
and as will be appreciated by those ordinary skill in the art.

The embodiments may also be embodied as one or more
non-transitory computer readable media having instructions
stored thereon for one or more aspects of the present disclo-
sure as described and illustrated by way of the embodiments
herein, as described herein, which when executed by a pro-
cessor, cause the processor to carry out the steps necessary to
implement the methods ofthe embodiments, as described and
illustrated herein.

Having thus described the basic concept of the disclosure,
it will be rather apparent to those skilled in the art that the
foregoing detailed disclosure is intended to be presented by
way of example only, and is not limiting. Various alterations,
improvements, and modifications will occur and are intended
to those skilled in the art, though not expressly stated herein.
These alterations, improvements, and modifications are
intended to be suggested hereby, and are within the spirit and
scope of the disclosure. Additionally, the recited order of
processing elements or sequences, or the use of numbers,
letters, or other designations therefore, is not intended to limit
the claimed processes to any order except as may be specified
in the claims. Accordingly, the disclosure is limited only by
the following claims and equivalents thereto.

What is claimed is:

1. An application level caching method, comprising:

monitoring, using a utility executed by a processor of a

computing device, run-time data access operations cor-
responding to an application, wherein monitoring the
run-time data access operations includes monitoring an
amount of data accessed during each of the run-time data
access operations, a cycle time of each of the run-time
data access operations, an input and output of a callable
unit associated with the run-time data access operations,
and a time stamp associated with each of the run-time
data access operations;

identifying, using the processor, at least one characteristic

associated with the run-time data access operations,
wherein identifying the at least one characteristic
includes identifying a correlation between an input and
an output of a callable unit associated with the run-time
data access operations and identifying a correlation
between a number of the run-time data access operations
and a period of time during a day;

triggering, using the processor, a caching rule based on the

at least one characteristic associated with the run-time
data access operations;

providing, using the processor, a memory access instruc-

tion to a cache management subsystem of the computing
device according to the caching rule; and

fetching, based on the memory access instruction and by

the cache management subsystem, data from an internal
data store of the computing device to a cache memory of
the computing device.

2. The method of claim 1, wherein the caching rule com-
prises at least one of: a cache populating rule, a cache replace-
ment rule, and a cache eviction rule.

3. The method of claim 1, wherein the caching rule is
automatically generated based on the at least one character-
istic associated with the run-time data access operations.

4. The method of claim 3, further comprising: storing the
automatically generated caching rule.

US 9,411,741 B2

9

5. The method of claim 1, wherein the caching rule is
pre-defined by an administrator.

6. The method of claim 1, further comprising: visually
representing, using a display unit operably connected to the
processor, the at least one characteristic associated with the
run-time data access operations.

7. The method of claim 1, further comprising: storing data
identifying the at least one characteristic associated with the
run-time data access operations.

8. An application level caching system comprising:

a processor; and

a memory disposed in communication with the processor

and storing processor-executable instructions, the
instructions comprising instructions to:
monitor, using a utility executed by the processor, run-time
data access operations corresponding to an application,
wherein monitoring the run-time data access operations
includes monitoring an amount of data accessed during
each of the run-time data access operations, a cycle time
of each of the run-time data access operations, an input
and output of a callable unit associated with the run-time
data access operations, and a time stamp associated with
each of the run-time data access operations;
identify at least one characteristic associated with the run-
time data access operations, wherein identifying the at
least one characteristic includes identifying a correlation
between an input and an output of a callable unit asso-
ciated with the run-time data access operations and iden-
tifying a correlation between a number of the run-time
data access operations and a period of time during a day;

trigger a caching rule based on the at least one character-
istic associated with the run-time data access operations;

provide a memory access instruction to a cache manage-
ment subsystem of a computing device according to the
caching rule; and

cause the cache management subsystem to fetch, based on

the memory access instruction, data from an internal
data store of the computing device to a cache memory of
the computing device.

9. The system of claim 8, wherein the caching rule com-
prises at least one of: a cache populating rule, a cache replace-
ment rule, and a cache eviction rule.

10. The system of claim 8, wherein the caching rule is
automatically generated based on the at least one character-
istic associated with the run-time data access operations.

11. The system of claim 10, further comprising: storing the
automatically generated caching rule.

12. The system of claim 8, wherein the caching rule is
pre-defined by an administrator.

13. The system of claim 8, further comprising: a display
module configured to visually represent the at least one char-
acteristic associated with the run-time data access operations.

10

15

20

25

30

35

40

45

50

10

14. The system of claim 8, the instructions further com-
prising instructions to: store the at least one characteristic
associated with the run-time data access operations.
15. A non-transitory computer readable medium having
stored thereon computer-executable application level caching
instructions, the instructions comprising instructions for:
monitoring, using a utility executed by a processor of a
computing device, run-time data access operations cor-
responding to an application, wherein monitoring the
run-time data access operations includes monitoring an
amount of data accessed during each of the run-time data
access operations, a cycle time of each of the run-time
data access operations, an input and output of a callable
unit associated with the run-time data access operations,
and a time stamp associated with each of the run-time
data access operations;
identifying at least one characteristic associated with the
run-time data access operations, wherein identifying the
at least one characteristic includes identifying a correla-
tion between an input and an output of a callable unit
associated with the run-time data access operations and
identifying a correlation between a number of the run-
time data access operations and a period of time during
a day;

triggering a caching rule based on the at least one charac-
teristic associated with the run-time data access opera-
tions;

providing a memory access instruction to a cache manage-

ment subsystem of the computing device according to
the caching rule; and

causing the cache management subsystem to fetch, based

on the memory access instruction, data from an internal
data store of the computing device to a cache memory of
the computing device.

16. The medium of claim 15, wherein the caching rule
comprises at least one of: a cache populating rule, a cache
replacement rule, and a cache eviction rule.

17. The medium of claim 15, the instructions further com-
prising instructions for: automatically generating the caching
rule based on the at least one characteristic associated with the
run-time data access operations.

18. The medium of claim 17, the instructions further com-
prising instructions for: storing the automatically generated
caching rule.

19. The medium of claim 15, wherein the caching rule is
pre-defined by an administrator.

20. The medium of claim 15, the instructions further com-
prising instructions for: visually representing the at least one
characteristic associated with the run-time data access opera-
tions.

21. The medium of claim 15, the instructions further com-
prising instructions for: storing the at least one characteristic
associated with the run-time data access operations.

#* #* #* #* #*

